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Diffraction, dispersion, and dissipative effects appear in an intensive wave bundle being 
propagated in a medium with heredity in addition to the nonlinear effects. In the most inter- 
esting zone, where all the listed effects have a mutually commensurate influence, a quasi- 
optical approximation can be utilized to describe the wave process. On the basis of this 
approximation, the authors of [I] derived an equation for acoustic waves in a fluid. A simi- 
lar approach was also used in considering longitudinal waves in solids and plates [2, 3]. 

In this paper an approximate integrodifferential equation is derived that describes 
quasiplanar shear wave propagation in a solid with heredity. 

Nonlinear strain waves in a medium with linear heredity are described by the equations 
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where Lij are the Lagrange stress tensors, eO -~-(uij+uj,~+uk,{u~.i ) is the finite strain tensor, 

u i i s  t h e  d i s p l a c e m e n t  v e c t o r  c o m p o n e n t ,  K l ( t )  and K 2 ( t )  a r e  t h e  b u l k  and s h e a r  r e l a x a t i o n  
kernels, respectively. We shall consider a plane strain field when the displacement vector 
l i e s  i n  t h e  x0y  p l a n e .  L e t  a b u n d l e  o f  s h e a r  waves  be p r o p a g a t e d  a l o n g  t h e  x a x i s .  For  c o n -  
v e n i e n c e  in the subsequent exposition, we will write down the linear part of the system (I) and 
and (2) in detail: 

t 

P~I -- (% + ~) (ULxx + u2,xv) -- ~ (ul,xx + Ul,yv) + ~ [K i (t - -  ~) + K 2 (t - -  ~)] 

t 

X [ U l , = ( ~ ) +  u2,xy ( ~ ) ] d ~ +  y K 2 (t--~)[Ul,XX(~) + ul,yy(~)]d~ = i1; ( 3 )  

t 

0;2 - (~ + ~) (~,u~ - ul,x~) - ~ ( ~ 2 , ~ +  ~2,uv) + 2 [K1 (t - -  g) + K~ (t - -  g)l 

l 
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Here fl and f2 = (3/2)(% + 2~ + 2~2 + 4~3 + 2y3)(U2,x)2U2,xx + f22 are the nonlinear compo- 
nents, where only the component governing the nonlinear effects along bundle propagation is 
written down explicitly. To derive the approximate equation of a wave bundle being propa- 
gated along the x axis, we utilize a representation of diffraction as the transverse diffu- 
sion of amplitude. We introduce the ray variables associated with the wave being propagated 
[I, 3-5]: 

~ t - -  x/c, ~ I = sU~y, % ~ ex 

(c is the characteristic wave velocity, not known in advance), and we expand the displacements 
in a power series in the small nonlinearity parameter e 
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where e = 3IX + 2p + 2v2 + 4v3 + 2y31A2/2pZ2; A is the maximal amplitude of the displacement 
u2 and ~ is the wavelength. The selection of the variables is explained by the fact that all 
the quantities, both along and across the direction of bundle propagation, vary because of 
bundle divergence, nonlinearity, and heredity. Changes across the bundle occur more rapidly. 
Substituting the asymptotic expansions (5) into (3) and (4), we retain just terms in linear 

powers of 
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An expression for the velocity c = ~ follows from the relationship (6) and the relation- 
0 

ship between the strains u~, T and u2, q : 

--cu~,~=O, (9) 

f r o m  ( 7 ) ,  w h i c h  r e f l e c t s  t h e  f a c t  t h a t  t h e  w a v e  b e i n g  p r o p a g a t e d  r e m a i n s  a p u r e  s h e a r  w a v e  i n  
t h e  z e r o t h  a n d  f i r s t  a p p r o x i m a t i o n ,  i . e . ,  d i v u  = O. S u b s t i t u t i n g  ( 9 )  i n t o  ( 8 ) ,  we o b t a i n  a 
s i n g l e  s c a l a r  e q u a t i o n  f o r  t h e  b u n d l e  

( .o ~2u o o (~)d~= o u~ + a ~ , , )  ~,~ + ~ (~ - -  ~) %,~  ~u~ ,~  ( 1 0 )  
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As is seen from the expressions presented, y > 0 always, while a > 0 in the majority of cases. 
Let ~ > 0; then by replacing the dependent variable ~ = ~-~ we reduce Eq. (11) to the form 

0 

For the classical model of a Voigt viscoelastic medium (G(t)--• the integrodifferential 
equation (12) becomes a differential equation 

+ + = ( 1 3 )  

In the case of a Maxwell viscoelastic medium [a viscoelastic fluid G ( t ) :  x2e-6~ ] ,  the integral 
operator can also be replaced by a differential operator when the relaxation time I/B is much 
less than the characteristic time of wave variation. To do this we expand the desired func- 
tion ~(~--z) in a Taylor series in the neighborhood of 

q~,~('~ , z) ~ q~,~('~)-- r -{- q~,~ (z)zV2 + ... 

and we represent the integral term in (12) in the form 

y ~2 N2 
x,., e x p [ f i  (~J . -  ~)] ~,-c (g) dg = ~ q~,.,; - ~ ,T,-~.~ + . . .  

- -oo  

Limiting ourselves to two terms in the asymptotic expansion, we write the equation for a 
shear wave bundle in a hereditary medium with an exponential kernel: 

132 



a_ ) -F+4" F. 

Within the framework of (12)-(14), we can examine a broad circle of phenomena that are 
due to bundle self-action and extrinsic plane waves: nonlinear refraction, self-focusing, 
nonlinear waveguide propagation, etc. These equations contain a cubic nonlinearity that dis- 
tinguishes them from corresponding equations of sound bundles in a fluid and gas [4~ 6]~ where 
a quadratic nonlinearity plays a governing role. Therefore, exactly as in optics, self-focus- 
ing effects can be expected in solids for bundles of quasiharmonic shear waves. In this case 
it is convenient to work with the equation for the slowly varying complex amplitude A(X, D) 

u ~ = A (X, 0) exp (-- i~T) + c . c .  (15) 

S u b s t i t u t i n g  ( 1 5 )  i n t o  ( 1 0 ) ,  we f i n d  t h a t  t h e  a m p l i t u d e  s h o u l d  s a t i s f y  t h e  n o n l i n e a r  S c h r o e d -  
i n g e r  e q u a t i o n  

aA ~ O2A 

where  G(~) i s  t h e  F o u r i e r  t r a n s f o r m  of  t h e  k e r n e l  G(~) ,in a s e m i - i n f i n i L - e  i n t e r v a l  

G(m) = SG(~) exp (ic0~) d~. 
0 

I n  t h e  c a s e  o f  a Y 0 i g t  medium, t h e  p u r e  d i s s i p a t i o n  t e r m - - i ~ 3 A / 2  w i l l  be  in  t he  f i r s t  p a r t  
of nq. (16). 

The cubic Schroedinger equation with zero right side has been investigated in sufficient 
detail in connection with the self-focusing problem for two-dimensional bundles and the for- 
mation of envelope waves in nonlinear media [7]. The right side in (16) can be considered 
a small perturbation for whose analysis distinct approximate methods have been developed that 
are based particularly on the method of the inverse scattering problem (see [8, 9], say). 

In conclusion, we note that singular heredity kernels are also utilized to describe wave 
processes in solid media, where it is proposed to select the singular kernels with a singu- 
larity not stronger than a logarithmic singularity [10]. 
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